

IMAGING NELL'IPERTENSIONE POLMONARE (dalla diagnosi alla prognosi)

Michele D'Alto mic.dalto@tin.it

UOC Cardiologia II Università degli Studi, A.O. "V. Monaldi" - Napoli

5th World Symposium on PH: Haemodynamic definition of PAH

Other causes of pre-capillary PH must be excluded

PAP: pulmonary arterial pressure; PAWP: pulmonary artery wedge pressure; PVR: pulmonary vascular resistance

Hoeper MM, et al. J Am Coll Cardiol 2013; 62:D42-50

5th World Symposium on PH: Diagnosis of PAH

Hoeper M , JACC 2013;62:D42-50

Pulmonary Angiography MR Echo CT scan Q scan

Echo for PAH diagnosis?

Point: Can Doppler Echocardiography Estimates of Pulmonary Artery Systolic Pressures Be Relied Upon to Accurately Make the Diagnosis of Pulmonary Hypertension? Yes

Counterpoint: Can Doppler Echocardiography Estimates of Pulmonary Artery Systolic Pressures Be Relied Upon to Accurately Make the Diagnosis of Pulmonary Hypertension? No

Rich JD, CHEST 2013;143:1533-36

Rudsky LG, CHEST 2013;143:1536-39

Echo provide an acceptable compromise among accuracy, safety, simplicity and cost: best screening tool for PAH!

Echo for PH diagnosis: pitfalls

Table 1—Partial List of Potential Pitfalls Associated With Inaccurate DE Estimates of sPAP

DE Pitfall	DE Underestimation of sPAP	DE Overestimation of sPAP	DE Underestimation or Overestimation of sPAP
Doppler beam <u>not parallel</u> with the TR jet	***		
Presence of severe TR	* * *		
Pressure measurements not made at	***		
end expiration			

DE = Doppler echocardiography; sPAP = systolic pulmonary artery pressure; TR = tricuspid regurgitation.

Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography

Lawrence G. Rudski, MD, FASE, Chair, Wyman W. Lai, MD, MPH, FASE, Jonathan Afilalo, MD, Msc, Lanqi Hua, RDCS, FASE, Mark D. Handschumacher, BSc, Krishnaswamy Chandrasekaran, MD, FASE, Scott D. Solomon, MD, Eric K. Louie, MD, and Nelson B. Schiller, MD, Montreal, Quebec, Canada; New York, New York; Boston, Massachusetts; Phoenix, Arizona; London, United Kingdom; San Francisco, California

J Am Soc Echocardiogr 2010;23:685-713

From the Holy Bible of Echocardiography...

Pulmonary Systolic Pressure/RVSP. TR velocity reliably permits estimation of RVSP with the addition of RA pressure, assuming no significant RVOT obstruction. It is recommended to use the RA pressure estimated from IVC and its collapsibility, rather than arbitrarily assigning a fixed RA pressure. In general, **TR velocity > 2.8 to 2.9 m/s, corresponding to SPAP of approximately 36 mm Hg, assuming an RA pressure of 3 to 5 mm Hg**, indicates elevated RV systolic and PA pressure. SPAP may increase, however, with age and in obesity.

Guidelines for the diagnosis and treatment of pulmonary hypertension

The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT)

European Heart Journal doi:10.1093/eurheartj/ehp297 **ESC/ERS GUIDELINES**

2009

PH possible:

- PASP 37-50 mmHg (TVR 2.9-3.4 m/s)
- additional echo variables

PH likely:

- PASP >50 (TVR > 3.4 m/s)

 Table 9
 Arbitrary criteria for estimating the presence
 of PH based on tricuspid regurgitation peak velocity and **Doppler-calculated PA systolic pressure at rest** (assuming a normal right atrial pressure of 5 mmHg) and on additional echocardiographic variables suggestive of PH

	C lass ^a	Level ^b
Echocardiographic diagnosis: PH unlikely Tricuspid regurgitation velocity ≤2.8 m/s, PA systolic pressure ≤36 mmHg, and no additional echocardiographic variables suggestive of PH	I	В
Echocardiographic diagnosis PH possible		
Tricuspid regurgitation velocity \leq 2.8 m/s, PA systolic pressure \leq 36 mmHg, but presence of additional echocardiographic variables suggestive of PH	lla	С
Tricuspid regurgitation velocity 2.9–3.4 m/s, PA systolic pressure 37–50 mmHg with/without additional echocardiographic variables suggestive of PH	lla	С
Echocardiographic diagnosis: PH likely		
Tricuspid regurgitation velocity >3.4 m/s, PA systolic pressure >50 mmHg, with/without additional echocardiographic variables suggestive of PH	I	В
Exercise Doppler echocardiography is not recommended for screening of PH	III	С

Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension

Michele D'Alto ^{a,*,1}, Emanuele Romeo ^a, Paola Argiento ^a, Antonello D'Andrea ^a, Rebecca Vanderpool ^b, Anna Correra ^a, Eduardo Bossone ^c, Berardo Sarubbi ^a, Raffaele Calabrò ^a, Maria Giovanna Russo ^a, Robert Naeije ^b

D'Alto M et al, Int J Cardiol 2013:168(4):4058-62

- \diamond Prospective study
- ♦ 161 patients referred for a suspicion of PH
- \Rightarrow 152/161 patients with sufficient quality echo imaging
- ♦ Echo within 1 hour of an indicated RHC

Bias: 0.5<u>+</u>9 mmHg

Limits of agreement: -19 to +18 mmHg

Good accuracy (low bias) Insufficient precision (large limits of agreement)

The concept of accuracy and precision

- Echo is adequate for population studies (good accuracy = low bias)
- Echo is inadequate for individual diagnosis (insufficient precision = large limits of agreement)

RHC

D'Alto M et al, Int J Cardiol 2013:168(4):4058-62

Indirect PAH signs

- Increased velocity PV reg (mPAP)
- Short acc. time in RVOT (mPAP)
- Right heart dilation
- Flat IV septum (LV eccentricity index)
- Increased RV wall thickness

Pre-test probability of precapillary PH

Guidelines for the diagnosis and treatment of pulmonary hypertension

The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT)

European Heart Journal doi:10.1093/eurhearti/ehp297	
Table 30Factors favouring diagnosis of leftventricular diastolic dysfunction in the presence ofpulmonary hypertension as assessed by Dopplerechocardiography	Echocardiography Left atrial enlargement Concentric remodelling of the LV (relative wall thickness >0.45) LV hypertrophy Presence of echocardiographic indicators of elevated LV filling
Clinical features	pressure ^{64,226}
Age >65	Interim evaluation (after echocardiography)
Elevated systolic blood pressure	Symptomatic response to diuretics
Elevated pulse pressure	Exaggerated increase in systolic blood pressure with exercise
Obesity, metabolic syndrome	Re-evaluation of chest radiograph consistent with heart failure ²²⁶
Hypertension	
Coronary artery disease	
Diabetes mellitus	
Atrial fibrillation	

RV anatomy: normal versus **PAH**

Chin KM, et al. Coron Artery Dis 2005; 16:13-8

Echocardiographic Prediction of Pre- versus Postcapillary Pulmonary Hypertension

Michele D'Alto, MD, PhD, Emanuele Romeo, MD, PhD, Paola Argiento, MD, PhD, Adriana Pavelescu, MD, PhD, Christian Mélot, MD, PhD, Antonello D'Andrea, MD, PhD, Anna Correra, MD, Eduardo Bossone, MD, PhD, Raffaele Calabrò, MD, Maria G. Russo, MD, and Robert Naeije, MD, PhD, *Naples, and Salerno, Italy; Brussels, Belgium* J Am Soc Echo, 2015

• 152 patients

echo and RHC within 1 hour

 Table 4
 Selected echocardiographic variables of potential predictive value entered as variables in the univariate and multivariate logistic regression

	Univariate lo		ogistic regression		Μ	ultiple logistic	ו		
Variable	Cutoff value	Р	SE	β coefficient	SE	Р	Echo	ocardiographic sc	ore
Right > left heart chamber	1	.0018	0.34	0.30	0.48	.5158		3	
El	≥1.2	.0039	0.33	0.38	0.45	.4052		4	
IVC	>20 mm, no collapse	.0076	0.39	0.96	0.48	.0464		10	
E/E' ratio	≤10	.00001	0.38	1.58	0.42	.0002		16	
RV forming apex	Present	.0144	0.35	0.14	0.58	.8085		1	
PA notch	Present	.2085	0.34						
Pericardial effusion	Present	.7805	0.52						
Moderate to severe left valve disease	Present	.1784	0.44						
Total score					_		34		

Echocardiographic Prediction of Pre- versus Postcapillary Pulmonary Hypertension

Michele D'Alto, MD, PhD, Emanuele Romeo, MD, PhD, Paola Argiento, MD, PhD, Adriana Pavelescu, MD, PhD, Christian Mélot, MD, PhD, Antonello D'Andrea, MD, PhD, Anna Correra, MD, Eduardo Bossone, MD, PhD, Raffaele Calabrò, MD, Maria G. Russo, MD, and Robert Naeije, MD, PhD, *Naples, and Salerno, Italy; Brussels, Belgium*

Figure 1 Examples of typical pre- and postcapillary PH.

Echocardiographic Prediction of Pre- versus Postcapillary Pulmonary Hypertension

Michele D'Alto, MD, PhD, Emanuele Romeo, MD, PhD, Paola Argiento, MD, PhD, Adriana Pavelescu, MD, PhD, Christian Mélot, MD, PhD, Antonello D'Andrea, MD, PhD, Anna Correra, MD, Eduardo Bossone, MD, PhD, Raffaele Calabrò, MD, Maria G. Russo, MD, and Robert Naeije, MD, PhD, Naples, and Salerno, Italy; Brussels, Belgium

J Am Soc Echo, 2015

Multimodality imaging in pulmonary hypertension

Canadian Journal of Cardiology 31 (2015) 440-459

Review Multimodality Imaging in Pulmonary Hypertension

Eduardo Bossone, MD, PhD,^{a,b} Santo Dellegrottaglie, MD, PhD,^{c,d} Smita Patel, MBBS, MRCP,^e Ekkehard Grunig, MD,^f Antonello D'Andrea, MD, PhD,^g Francesco Ferrara, MD, PhD,^{b,h} Paola Gargiulo, MD,ⁱ Michele D'Alto, MD,^g Andrea Soricelli, MD,^{i,j} Antonio Cittadini, MD, PhD,^h Javier Sanz, MD,^d Pasquale Perrone-Filardi, MD, PhD,^k and Melvyn Rubenfire, MD^l

Canadian J Cardiol, 2015;31:440-59

HR-CT: Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH)

V/Q scan (scintigraphy) for ruling out CTEPH

ventilation В perfusion Courtesy A Cuocolo

Mismatch = high probability of CTEPH

Pulmonary CT angiography for chronic thromboembolic pulmonary hypertension (CTEPH)

Acute pulmonary embolism: filling defect forming acute angles (arrow) with the vessel wall, compatible with acute pulmonary embolism (PE).

Acute and chronic embolism: eccentric walladherent peripheral thrombus (arrow) with irregular contour of the intimal surface (chronic PE). Central filling defect in the left lower lobe pulmonary artery and lingula (arrowheads) due to acute PE.

Pulmonary CT angiography before and after pulmonary endoarterectomy (PEA)

before

after

Myocardial ischemia in PAH patients?

A 38-year-old female patient with pulmonary arterial hypertension and an ASD with **shortness of breath and chest pain**.

Left main compression due to enlargement of the proximal pulmonary artery. Symptoms resolved with a left main bare metal stent.

Pulmonary angiogram

Typical surgical specimens

Courtesy A D'Armini

Who is able to survive?

"It is not the strongest of the species, nor the most intelligent that survives. It is the one that is most adaptable to change".

From: The origin of species.

parles Series

"La specie che sopravvive non è quella più forte, né quella più intelligente. Ma quella che si adatta meglio al cambiamento".

Right ventricular remodeling in Eisenmenger syndrome

Diller, Eur Heart J 2007;H54–H60

PH and GUCH Unit Monaldi

Optimal RV adaptation

Parameters reflecting RV function

Echocardiography

- Right atrial area¹
- Right ventricular area¹
- TAPSE^{1,2}
- Tei index³
- Right ventricular fractional area change²
- Degree of tricuspid regurgitation²
- Pericardial effusion⁴
- Inferior vena cava collapsibility²
- Superior vena cava flow velocity pattern²
- Left ventricular eccentricity index²
- Right ventricular filling pressure⁵

MRI

- Right ventricular ejection fraction⁶
- Right ventricular stroke volume
- Right ventricular mass
- Right ventricular volume¹

RHC

- Right arterial pressure⁷
- Cardiac index⁸

Biomarkers

- N-terminal pro-brain natriuretic peptide⁹
- Troponin T¹⁰

Grünig E, et al. DMW 2010. 2. Ghio S, et al. Int J Cardiol 2010.
 Tei C, et al. J Am Soc Echocardiogr 1996. 4. Raymond RJ, et al. JACC 2002.
 Utsunomiya H, et al. J Am Soc Echocardiogr 2009. 6. van de Veerdonk M, et al. JACC 2011.
 McLaughlin VV, et al. Circulation 2002. 8. D'Alonzo GE, et al. Ann Intern Med 1991.
 Nagaya N, et al. JACC 1998. 10. Torbicki A, et al. Circulation 2003.

TAPSE: tricuspid annular plane systolic excursion

Echocardiographic predictors in PAH

Raymond et al. J Am Coll Cardiol. 2002

Pulmonary Arterial Hypertension: The Key Role of Echocardiography

Michele D'Alto, Ph.D.,* Emanuele Romeo, Ph.D.,* Paola Argiento, Ph.D.,* Giovanni Di Salvo, Ph.D.,* Roberto Badagliacca, M.D.,† Anna P. Cirillo, M.D.,‡ Harald Kaemmerer, M.D.,§ Eduardo Bossone, M.D.,¶ and Robert Naeije, M.D.**

Echocardiography 2015

Poor prognosis in PAH if...

Pericardial effusion

Pulmonary Arterial Hypertension: The Key Role of Echocardiography

Michele D'Alto, Ph.D.,* Emanuele Romeo, Ph.D.,* Paola Argiento, Ph.D.,* Giovanni Di Salvo, Ph.D.,* Roberto Badagliacca, M.D.,† Anna P. Cirillo, M.D.,‡ Harald Kaemmerer, M.D.,§ Eduardo Bossone, M.D.,¶ and Robert Naeije, M.D.**

Poor prognosis in PAH if...

10

5

[cm/s]

-10

Evidence of presystolic tricuspid regurgitation

Severely **reduced myocardial deformation properties** (A. strain; B. strain rate). Myocardial deformation was more severely compromised at mid and apical right ventricular free wall, while basal segment was less involved, suggesting a **different regional response to pressure overload**.

Speckle tracking, an angle independent technique, allows the assessment of circumferential myocardial deformation.

Severe reduction of

Asynchronous peak deformation circumferential strain SC A013/01/26-13:48:39 OCAL: Circumferential Strain (%) 8.0 SAX-PM AVC Frame = 20-8.0 % 200 600

D'Alto M et al, Echocardiography 2015

Cardiac MRI: Four-chamber and short-axis in a healthy subject and in a PAH patient

Take-at-home message - 1

- Multimodality imaging is a must in PAH diagnosis and management.
- Echo plays a key-role in screening, differential diagnosis and follow-up.
- Echo does not provide "magic numbers": multiparametric evaluation (echo as part of clinic evaluation!).
- Echo does not allow a certain diagnosis in individual patients (insufficient precision = large limits of agreement): gold standard for PAH diagnosis remains right heart catheterization.

Take-at-home message - 2

- HR-CT scan provides important information on lung diseases.
- V/Q scan is indicated for ruling-out CTEPH.
- Pulmonary angio-CT scan and pulmonary angiography are mandatory for CTEPH evaluation.
- Cardiac MRI is important for studying RV remodeling and function and identifying pulmonary vessels anomalies.

Multitasking PAH-imaging expert

